Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 275: 116224, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518610

RESUMO

Depletion of fossil fuel and pollution by heavy metals are two major global issues. The cell wall of algae consists of polymers of polysaccharides such as cellulose, hemicellulose, alginate, starch, and many others that are readily hydrolyzed to monosaccharides and hence are amenable to fermentation into bioethanol. Moreover, algae contain lipids that may undergo trans-esterification to biodiesel, and can be absorbed by heavy metals. In this study, extraction of lipids from Turbinaria turbinata (common brown alga) from the beach of Sharma, NEOM, Tabuk, Saudi Arabia by different solvents hexane, methanol, and hexane: methanol (1:1), and trans-esterification was performed to obtain biodiesel and investigated by GC.MS. The alga residue after fats extractions by different solvents was used in bioremediation synthetic wastewater containing 50 ppm of As-3, Co+2, Cu+2, Fe+2, Mn+2, and Zn+2. The residue of defatted alga was hydrolyzed by 2% H2SO4 and then fermented to obtain bioethanol. The combination of hexane: methanol (1:1) gave the greatest amount of petroleum hydrocarbons, which contain Tetradecane, 5-methyl, Octacosane, Pentatriacontane, and a small amount of Cyclotrisiloxane, Hexamethyl. The most effective removal % was obtained with alga residue defatted by hexane: methanol (1:1), and methanol, 100% removal of As-3, 83% Co+2, 95% Cu+2, 97.25% Fe+2, Mn+2 79.69%, Zn+2 90.15% with 2 g alga /L at 3 hours. The lowest value of sugar was obtained with hexane: methanol residue but gave the highest bioethanol efficiency. Thus, it is possible to use Turbinaria turbinata, or brown alga as a feedstock to produce bio-diesel, and bioethanol, and to remove heavy metals from wastewater, which may have a great economic and environmental significance.


Assuntos
Metais Pesados , Feófitas , Biocombustíveis , Hexanos , Metanol , Águas Residuárias , Metais Pesados/análise , Plantas , Biodegradação Ambiental , Lipídeos , Solventes
2.
BMC Microbiol ; 24(1): 50, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326741

RESUMO

BACKGROUND: Bacillus cereus is implicated in severe foodborne infection in humans. This study intended to assess the occurrence, groEL gene sequencing, biofilm production, and resistance profiles of emerged multidrug resistant (MDR) B. cereus in meat and meat product samples. Moreover, this work highlights the virulence and toxigenic genes (hblABCD complex, nheABC complex, cytK, ces, and pc-plc) and antimicrobial resistance genes (bla1, tetA, bla2, tetB, and ermA). METHODS: Consequently, 200 samples (sausage, minced meat, luncheon, beef meat, and liver; n = 40 for each) were indiscriminately collected from commercial supermarkets in Port Said Province, Egypt, from March to May 2021. Subsequently, food samples were bacteriologically examined. The obtained isolates were tested for groEL gene sequence analysis, antibiotic susceptibility, biofilm production, and PCR screening of toxigenic and resistance genes. RESULTS: The overall prevalence of B. cereus among the inspected food samples was 21%, where the highest predominance was detected in minced meat (42.5%), followed by beef meat (30%). The phylogenetic analysis of the groEL gene exposed that the examined B. cereus strain disclosed a notable genetic identity with other strains from the USA and China. Moreover, the obtained B. cereus strains revealed ß-hemolytic activity, and 88.1% of the recovered strains tested positive for biofilm production. PCR evidenced that the obtained B. cereus strains usually inherited the nhe complex genes (nheA and nheC: 100%, and nheB: 83.3%), followed by cytK (76.2%), hbl complex (hblC and hblD: 59.5%, hblB: 16.6%, and hblA: 11.9%), ces (54.7%), and pc-plc (30.9%) virulence genes. Likewise, 42.9% of the examined B. cereus strains were MDR to six antimicrobial classes and encoded bla1, bla2, ermA, and tetA genes. CONCLUSION: In summary, this study highlights the presence of MDR B. cereus in meat and meat products, posing a significant public health risk. The contamination by B. cereus is common in minced meat and beef meat. The molecular assay is a reliable fundamental tool for screening emerging MDR B. cereus strains in meat and meat products.


Assuntos
Microbiologia de Alimentos , Produtos da Carne , Humanos , Animais , Bovinos , Enterotoxinas/genética , Bacillus cereus , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Carne
3.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836800

RESUMO

(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both neurosecretory cells and midgut, using L. migratoria nymphs as a model of the cytotoxic effect. Histopathological change in the brain was examined in both normal and abamectin-treated fifth-instar nymphs. Neurosecretory cells (NSCs) were also examined where there were loosely disintegrated cells or vacuolated cytoplasm. (3) Results: The results showed distinct histological changes in the gastrointestinal tract of L. migratoria nymphs treated with abamectin, with significant cellular damage and disorganization, i.e., characteristic symptoms of cell necrosis, a destroyed epithelium, enlarged cells, and reduced nuclei. The observed biochemical changes included an elevation in all measured oxidative stress parameters compared to untreated controls. The malondialdehyde activities (MDAs) of the treated nymphs had a five- to six-fold increase, with a ten-fold increase in superoxide dismutase (SOD), nine-fold increase in glutathione-S-transferase (GST), and four-fold increase in nitric oxide (NO). (4) Conclusions: To further investigate the theoretical method of action, a molecular docking simulation was performed, examining the possibility that abamectin is an inhibitor of the fatty acid-binding protein Lm-FABP (2FLJ) and that it binds with two successive electrostatic hydrogen bonds.


Assuntos
Inseticidas , Locusta migratoria , Animais , Simulação de Acoplamento Molecular , Locusta migratoria/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Estresse Oxidativo , Proteínas de Insetos/química
4.
AMB Express ; 13(1): 110, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817026

RESUMO

Avian salmonellosis is concomitant with high financial crises in the poultry industry as well as food-borne illness in man. The present study is designed to investigate the emergence of Salmonella Enteritidis and Salmonella Typhimurium in diseased broilers, resistance profiles, and monitoring virulence and antibiotic resistance genes. Consequently, 450 samples (cloacal swabs, liver, and spleen) were collected from 150 diseased birds from different farms in Giza Governorate, Egypt. Subsequently, the bacteriological examination was done. Afterward, the obtained Salmonella isolates were tested for serogrouping, antibiogram, PCR monitoring of virulence (invA, stn, hilA, and pefA), and antimicrobial resistance genes (blaTEM, blaCTX-M, blaNDM, ermA, sul1, tetA, and aadA1). The total prevalence of Salmonella in the examined diseased broilers was 9.3%, and the highest prevalence was noticed in cloacal swabs. Among the recovered Salmonella isolates (n = 35), 20 serovars were recognized as S. Enteritidis and 15 serovars were identified as S. Typhimurium. Almost 60% of the retrieved S. Enteritidis serovars were extensively drug-resistant (XDR) to seven antimicrobial classes and inherited sul1, blaTEM, tetA, blaCTX-M, ereA, and aadA1 genes. Likewise, 25% of the recovered S. Enteritidis serovars were multidrug-resistant (MDR) to six classes and have sul1, blaTEM, tetA, blaCTX-M, and ereA resistance genes. Also, 66.7% of the retrieved S. Typhimurium serovars were XDR to seven classes and have sul1, blaTEM, tetA, blaCTX-M, ereA, and aadA1 genes. Succinctly, this report underlined the reemergence of XDR S. Typhimurium and S. Enteritidis in broiler chickens. Meropenem and norfloxacin exposed a hopeful antimicrobial activity toward the re-emerging XDR S. Typhimurium and S. Enteritidis in broilers. Moreover, the recurrence of these XDR Salmonella strains poses a potential public health threat.

5.
Pathogens ; 11(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365013

RESUMO

Aeromonas veronii is associated with substantial economic losses in the fish industry and with food-borne illness in humans. This study aimed to determine the prevalence, antibiogram profiles, sequence analysis, virulence and antimicrobial resistance genes, and pathogenicity of A. veronii recovered from Mugil seheli. A total of 80 fish were randomly gathered from various private farms in Suez Province, Egypt. Subsequently, samples were subjected to clinical, post-mortem, and bacteriological examinations. The retrieved isolates were tested for sequence analysis, antibiogram profile, pathogenicity, and PCR detection of virulence and resistance genes. The prevalence of A. veronii in the examined M. seheli was 22.5 % (18/80). The phylogenetic analyses revealed that the tested A. veronii strains shared high genetic similarity with other A. veronii strains from India, UK, and China. Using PCR it was revealed that the retrieved A. veronii isolates harbored the aerA, alt, ser, ompAII, act, ahp, and nuc virulence genes with prevalence of 100%, 82.9%, 61.7%, 55.3%, 44.7%, 36.17%, and 29.8%, respectively. Our findings revealed that 29.8% (14/47) of the retrieved A. veronii strains were XDR to nine antimicrobial classes and carried blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 resistance genes. Likewise, 19.1% (9/47) of the obtained A. veronii strains were MDR to eight classes and possessed blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 genes. The pathogenicity testing indicated that the mortality rates positively correlated with the prevalence of virulence-determinant genes. To our knowledge, this is the first report to reveal the occurrence of XDR and MDR A. veronii in M. seheli, an emergence that represents a risk to public health. Emerging XDR and MDR A. veronii in M. seheli frequently harbored aerA, alt, ser, ompAII, and act virulence genes, and blaTEM, sul1, tetA, blaCTX-M, blaSHV, and aadA1 resistance genes.

6.
Front Vet Sci ; 9: 947641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090167

RESUMO

The Newcastle disease virus (NDV) is considered a serious threat to global poultry production. Despite the availability of vaccines, it remains a major devastating epidemic responsible for great economic losses. The development of novel virus-controlling strategies is therefore an urgent need. The present study investigated for the first time the antiviral efficacy of propolis and chitosan nanoparticles against two NDV isolates, MW881875 and MW881876, recovered from vaccinated commercial broiler farms in KafrEl Sheikh Governorate, Egypt. The polygenetic analysis focused on the F and M genes, with one isolate having a 97% identity with the genotype VII NDV Israeli strain. On the other hand, the identified isolates showed high genetic variation and only 76% identity with the LaSota vaccine (genotype II). More interestingly, the cell cytotoxic concentrations of chitosan, propolis, and a propolis-chitosan mixture against Vero cells were 327.41 ± 12.63, 109.48 ± 8.36, and 231.78 ± 11.46 µg/ml, respectively. The median tissue culture infectious dose (TCID50) assay demonstrated that the nanoparticles have antiviral effects after NDV exposure resulting in significant decrease in viral titer (TCID50) by 2, 2.66, and 2.5 log10 at 62 µg/ml of chitosan, 13 µg/ml of propolis, and 30 µg/ml of the propolis-chitosan mixture, respectively, compared with the control TCID50 value of 4 log10. Taken together, the results provide novel insights into the potentially promising roles of propolis and chitosan as novel, safe, and effective antiviral agents against NDV.

7.
J Vis Exp ; (115)2016 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-27684443

RESUMO

Competitive exclusion can occur in microbial communities when, for example, an inhibitor-producing strain outcompetes its competitor for an essential nutrient or produces antimicrobial compounds that its competitor is not resistant to. Here we describe a deferred growth inhibition assay, a method for assessing the ability of one bacterium to inhibit the growth of another through the production of antimicrobial compounds or through competition for nutrients. This technique has been used to investigate the correlation of nasal isolates with the exclusion of particular species from a community. This technique can also be used to screen for lantibiotic producers or potentially novel antimicrobials. The assay is performed by first culturing the test inhibitor-producing strain overnight on an agar plate, then spraying over the test competitor strain and incubating again. After incubation, the extent of inhibition can be measured quantitatively, through the size of the zone of clearing around the inhibitor-producing strain, and qualitatively, by assessing the clarity of the inhibition zone. Here we present the protocol for the deferred inhibition assay, describe ways to minimize variation between experiments, and define a clarity scale that can be used to qualitatively assess the degree of inhibition.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Interações Microbianas/fisiologia , Ágar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...